\ 전기 엔지니어의 꿈 :: 'RC회로' 태그의 글 목록
반응형

지난시간에 이어서 오늘은 수식유도를 수학적으로

 

유도하는 과정을 한번 진행해보도록 합시다.

 

X4라는 스위치가 열린상태로 있다가.

 

외부의 힘을 받아서.

 

탁 닫혔을때, 과연 어떤 형태로 그래프가 그려질까?

 

 

우리가 궁금한건.

 

인덕터 전류 I가 시간에 따라서 어떻게 변화하느냐 입니다.

 

  우리는 이번엔. 지난시간과 다르게 수식유도를 진행할 예정입니다.

 

이유는. 미분방정식이라는게 굉장히 복잡하기 때문입니다.

 

그래서 우리는 경험에 근거한 추측성 사실을 바탕으로 결과를 미리 예측하고

 

그런 추측성 사실이 진짜인지 아닌지를 검증할 겁니다.

 


 

지난시간(RC 회로의 미분방정식 풀이 포스팅)엔

 

키르히호프 법칙을 사용하여 폐회로의 회로상태를 유도하였죠.

 

근데. 우리는

 

지난  RC회로의 미분방정식 풀이 포스팅에서

 

아래와 같은 결론을 얻었습니다.

RL회로도 RC회로와 같이 소자만 바뀌었을뿐이지

 

실제론 L이나 C나 그 수식이 비슷할거라 추측할수 있는데요.

 

그렇다면 문제가 더 쉽게 풀리지 않을까?

 

 

생각해볼 수 있죠.

 

수학적인 테크닉을 가지고 말이죠.

 

위 수식을 잘 나눠보면

 

 

자연로그 e에 관련된 지수함수로

 

응답이

 

나타나는 1부분과

 

시간과 관련없이 전압원에서 정전압을 출력하는

 

V(s)로 나뉜다는 사실을 알 수 있죠.

 

즉,

 

RC 회로의 시간에 따른 전압은

 

시간에 따라 변화하는 1부분

 

시간에 따라 변화하지 않는 2부분

 

으로 나뉜다는 사실을 알 수 있습니다.

 

여기에서.

 

1부분은 자연응답 = 과도응답 이라고도함.

 

2부분은 강제응답 = 정상응답 이라고도함.

 

이라고 명칭되어 사용 됩니다.

 

그림에서 보면 바로 

 

곡선구간이 나타나는 저부분이 

이 성분인거고.

 

그리고 직선구간이 나타나는 저부분이

 

이 성분인거죠.

 

우리는 RL 회로의 미분방정식 풀이를 하지 않았지만.

 

RL 회로도 RC회로와 비슷한 .

 

에너지 저장 소자라는 사실을 알고 있으며,

 

이로 미루어보면 분명 RL회로도 지수함수 형태의 그래프를 띈다고

 

추측할 수 있습니다.

 

우선은 지수함수 형태의 그래프를 띄는지 안띄는지는 수식을 유도하고

 

차후 검증하면 되는것이고.

 

우선은 지수함수로써

 

인덕터 전류 I 가 어떻게 변화하는지 알아보도록 하죠.

 


우린 인덕터 전류가 궁금하다 하였었죠.

 

인덕터 전류는 수식유도는 잘모르겠고

 

우선은 결론을 먼저 짓고 시작할게요.

 

이 수식도 자세히보면,

 

시간에 따라 전류가 변화하는 i(t) 부분과

 

시간에 따라 전류가 변화하지 않는 i(steady) = i(sy) 부분으로

 

나뉜다는 걸 미리 결론으로 깔고 들어가자는 겁니다.

 

그리고 RC회로를 유도하면서 우리는 경험치를 높일 수 있었습니다.

 

과도응답은. 지수함수 형태로 감쇄한다는 사실을 알았죠.

 

그래서 우리는 아래 사실을 도출할 수 있습니다.

 

i(t)가 어떻게 생겨먹었는진 모르겠는데

 

일단 이렇게 정의할 순 있겠다.

 

고 생각하고 문제를 접근하는 겁니다.

 

아니 A는 뭐고 지수함수에 저딴 형태는 어떻게

 

알 수 있는거냐고 따질 수 있겠죠?

 

그야 과거에도 그랬으니까.

 

이번에도 추측할 수 있는 것(맞는지 틀린진 모름)이죠.

 

과도상태라는 것이 자연로그 함수로 표현되며

 

제곱 부분에 시간축은 -형태로 존재한다는 사실도 알고.

 

다만, RC와 RL과 다른부분은 시정수인

 

RC, L/R 부분인건데. 

 

이거는 사실. 키르히호프 법칙을 실제 유도했을때나

 

확인할 수 있는 부분이긴 합니다.,

 

어쨋든. 결론을 먼저 지어놓고 역으로 맞는지 검증하기로 했으니까.

 

한번보죠.

 

지금 우선 과도응답 부분은 정리가 됬군요., 

 

정상응답은 쉽습니다.

 

 

회로를 보면 전압원 V(s)가.

 

R에 미치는 영향만 조사하면 되는거니까.

 

이런 수식이 만들어질 수 있는거죠.

 

정리하면 시간이 충분히 흐른뒤에 L4(인덕터)는

 

회로에 영향을 주지 못한다는 의미.

 

정답은 그래서 사실 이겁니다.

 

A를 구하기 위해서는 

 

t = 0을 대입했을때 상황을 따져보면됩니다.

 

t가 0이되면, R이나 L값에 상관없이

 

자연로그 함수는 1이 될 것이고요.

 

수식은 이렇게 정리될 겁니다.

 

V(s)는 전압원이니까 상수

 

R도 상수

 

I = 초기에 인덕터에 흐르는 전류

 

가 되겠죠.

 


자. 사실 이 수식유도는

 

완전 개판 엉망입니다.

 

저는 대학생때 이러한 수식유도가 너무 화가났습니다.

 

결론을 알고서 답을 내리면 이건 논리 비약을 넘어서

 

호기심 가득한 학생의

 

배움을 우롱하는 행위 아닌가?

 

지금 생각해보면 이런 논리적인 비약이 너무자주. 매우많이 일어나서

 

안그래도 어려운 전기공학을 더 어렵게 느껴

 

모든 수식과 논리를 이해없이 중간, 기말을 잘보기위해 단순 암기만 했었다는

 

사실이 화가납니다.

 

 

사실 이러한 수식을 보고 이렇게까지 생각하는 사람은

 

저뿐이었는지도 모르겠습니다.

 

엔지니어는 창의적으로 생각할 수 있어야 합니다.

 

사실 저는 물류자동화 설계엔지니어로 약 6년간 일하면서

 

느끼건데.

 

지금 배우고있는

 

이런 수식유도 따위는 중요하지 않습니다.

 

누군가 훌륭한 툴을 이미 만들어놨고 난 그걸 몇번의 마우스

 

클릭으로 해결할 수 있는 틀이 이미 갖춰졌거든요.

 

그런데. 그러한 엔지니어들도

 

어떠한 문제를 해결하는 과정에서는 적당한 논리가 필요합니다.

 

논리라는 것은 기초에 근거해 쌓일 수 있는것이라 믿습니다.

 

헌데 대학의 교과서가

 

이런식으로 써져있는게 저는 너무 화가났습니다.

 

기초가 아니라. 그냥 책에 똑같은 수식유도 하기 귀찮아서 대충 넘어가는 걸로

 

보였달까요?

 


 

어쨋든. 저는 여러분이 배웠던 키르히호프 법칙 고대로 써서 수식

 

유도해보겠습니다.

 

 

위 수식에 키르히호프 법칙을 적용하면

 

아래와 같이 수식을 유도할 수 있습니다,

 

이 수식을 이렇게 표현해볼까요?

다시한번 정리해보겠습니다.

 

 

양변을 시간으로 적분해보겠습니다

 

 

di라고 써져있는 

 

적분인자 역시. 시간에 따른 변수임을 상기하면서

 

다시 정리하면.

 

또한 번 정리하면...

 

ln의 차는 수식 나눗셈으로 표현될 수 있죠?(공학수학 참고)

 

이 수식에서 양변에 e인 자연로그를 취해봅시다.

 

그럼 결과는.

 

이수식 어디서 많이 보지 않았나 싶네요.

 

일단 분모를 삭제해봅시다.

 

여기서 수식을 i에 대해서 정리하면.

 

위에 내용참고.

 

우리가 처음에 정리했던 수식과 동일한 수식이 되는겁니다.

 

 

 

사실 제가

 

수학을 그닥 잘하는 편도 아니고.

 

공부한지도 너무 오래되서.

 

수식정리는 애를 참많이 먹네요

 


 

이로써.

 

모든 회로이론의 포스팅을 마무리 하겠습니다.

 

원래는 조금더 회로이론 관련 포스티을 진행할까 했는데.

 

이제 전공 초기 과목을 마치고. 상위 과목으로 넘어가도 될 듯 합니다.

 

 

 

지금까지의 긴 공부 여정에 따라와주셔서 감사합니다.

 

아직 확실히 커리가 정해지지 않았지만

 

다음에는

 

제어공학이나 전기기기를

 

포스팅으로 소개할 예정입니다.

반응형
블로그 이미지

Lubly0104

전기설계 엔지니어가 알려주는 찐전기

,
반응형

자.

 

지난시간에 RC회로의 계단 응답을 배우는 목적과 개요를

 

설명드렸습니다.

 

오늘 알아볼건. 수식 유도입니다.

 

수식유도라고해서 지레 겁먹을 필요 없습니다.

 

어차피 수식은 자연 현상을 이해하는 도구중 하나일뿐.

 

사람은 직관을 가지고 있기 때문에.

 

어떤 방법이건 전기라는 자연현상을 이해하기만하면 됩니다.

 

어차피 자연은 100% 이상적인 학문이 아닙니다.

 

가벼운 마음으로 읽고 따라와주세요.

 


 

지난 시간에 배웠던 RC 회로였습니다.

 

내용을 다시 리마인드해보면.

 

G6이라는 전원이

 

R6를 통해 C6로 전원을 인가해주는데

 

 1초 후 X4 스위치가 갑자기 연결된 경우

 

어떤일이 벌어질까?

 

지난시간에 화두를 던지고 갔던 내용입니다.

 

자 오늘은 수학적인 방법으로 이러한 전류전압 특성을 알고싶기에

 

다소 어려울 수 있지만 수식을 끌고오도록 하겠습니다.

 

최대한 쉽게 쉽게 설명할테니.

 

포기하지말고 따라와 주세요.

 

우선 X4 스위치가 열려있는 시간 시간.

 

그러니까 0~1초까지는

 

CASE 0~1초

 

이 회로는 사실상

 

 

해석하는 의미가 없습니다.

 

도선이 끊어져있기 때문이죠.

 

전류가 흐르지 않는 회로는 그닥 의미가 없습니다.

 

공학적으로 이용할 가치도 없고요.

 

해서 우리는 지난시간에 배웠던 그림에서

 

 

CASE 2 1초 ~ 1+T 초(오늘의 주제)

그래프를 보니 뭔가 직선보다는 곡선에 가까워 미분이나 적분같은 수식이 따라오는 느낌이네요.

 

오늘 우리는 최종적으로 수식유도를 통해 T초가 몇초 인지를 알아낼겁니다.

 

그리고 제어공학에서는 이를 과도응답이라 합니다.

 

과도응답이라하면 쉽게 설명해서 정상상태가 되기 전까지 시간입니다.

 

 

예를들어 자동차의 제로백을 생각하면 쉽습니다.

 

나는 엑셀을 분명히 100km/h(정상상태) 에 다다를 수 있게끔

 

풀악셀을 밟았습니다.

 

근데 자동차는 밟는 순간 바로 100km/h에 도달하나요?

 

 

이는 차마다 다 다릅니다.

 

부가티같은 차는 성능이 좋아 확나가는 반면

 

제차는 한 10초? 12초??ㅎㅎㅎㅎ

 

걸린것 같아요.

 

여튼 중요한건 이겁니다.

 

내가 입력을 갑자기 인가하게 되면 짧은 시간동안.

 

저런 과도상태가 있고 그다음에 내가 원했던 정상상태가 온다는 것.

 

밑에서 수식으로 저 과도상태를 해석해볼게요.

 

 

 

CASE 2 1+T 초 이후

이때는 사실상

 

전원을 인가하고 있는 RC회로와 다름없습니다.

 

 

 

수식은 너무간단합니다.

 

G6에 발생되는 전압 + R6에서 소모하는 전압 + C6에 저장되는 전압 = 0

 

Q = C * V

V = I * R

키르히호프 법칙

 

이 세가지만 알면 전류전압 특성을 구할 수 있습니다.

 

이부분은 패스하도록 하겠습니다.

 


초기에(0초에서 1초사이 구간에) 커패시터에

 

이미 충전된 전압 V(1-)가  존재했다고 가정해봅시다

 

그리고 X4를 닫아 갑자기 전기가 통하게 되었더라도

 

커패시터는 갑자기 전압이 변화할 수 없으므로

(이해안가면 커패시터 포스팅 참고)

 

초기 충전된 전압이. 그대로 유지될 겁니다.

 

한마디로 스위치를 닫기전이던 닫고나서든

 

그사이에 아주 짧은시간 동안은 커패시터의 초기 충전된 전압이

 

회로에 영향을 미친다는 사실을 알 수 있습니다. 그게 아무리 미미하다고 하더라도요

 

우리는 따라서 스위치를 닫은 바로직후의 값인 V(-1)을 알 수 있습니다.

 

이 상태는 사람이 상상할 수 없을정도로 아주짧고 찰나의 순간 

 

V(-1)은 바뀔겁니다.

우리는 위 수식을 키르히호프 전류법칙으로 풀 수 있을 것 같습니다.

 

Q = C * V라고 하였습니다.

 

여기서 양변을 시간으로 미분하면

 

라는 수식을 얻을 수 있죠.

 

이는 커패시터에 흐르는 전류를 나타낸 수식입니다.

 

그리고 또하나의 수식을 얻을 수 있죠.

 

뭐냐면.

 

커패시터에 초기에 충전된 전압 V(cap)과 전압원V(S)의 전위차에

 

의해 저항 R의 전류가 결정된다는 사실이죠.

 

수식으로 나타내면 이렇겠죠.

 

 

압니다. 여러분의 머리속

 

(아니 u(t)는 갑자기 어디서 튀어나온건데???)

 

이게 u(t)의 함수모형입니다.

 

그래프에서 전압이 팍튀는 시간은 1초이고

 

전압도 1[v]입니다.

 

중요한건 단위라는 개념을 내포하므로 1이라는 숫자가 들어가있는

 

계단모습 그래프라 보시면됩니다.

 

이 그래프는 우리가 의미를 부여하기 위한 함수를 인위적으로 나타낸 것으로 보시면 되는데

 

얘는 과도기간이 없습니다.

 

과도기간이 없게끔 우리가 정의를 내린 함수거든요.

 

여튼.

 

일정시간동안 전압이 없다가 갑자기 팍하고 생기는.

 

수식에서 보면 V(-1)이라는 커패시터에 충전된 초기전압이

 

시간에 따라(스위칭 상태) 변화하므로 단위(1)계단응답이 곱해진거라 생각하시면 됩니다.

 

문제상 1초까지는 u(t) = 0이고 1초 이후부터는 1이겠죠.

 

 

....

 

 

여튼 수식을 정리해보면 이렇습니다.

 

 

양변을 c로 나누어 다시정리해볼까요

 

 

 

위 수식에서 - 부호를 없애기 위해서 +기호만 보이게끔

 

이항했습니다.

u(t)는 우리가 스위치를 닫은 그순간을 측정하는 것이기 때문에

 

1이 되는 것을 알 수 있고.

 

수식은 조금더 간단해집니다.

 

u(t)가 사라졌으니 정리를 다시해볼까요?

 

한번더 정리를 해야겠네요

 

V(cap)을 V로 치환하겠습니다.

 

자 여기서 우리는 양변을 그냥 적분해도 되지만.

 

그렇게되면 수식이 매우 복잡해져 해석이 어려우니.

(이미해봤음.)

 

약간 수학적인 테크닉을 사용할겁니다.

 

자연로그 ln을 끌고올건데요

 

먼저 위 수식을 이렇게 바꿔보겠습니다.

 

양변을 시간에 대해 적분 때리겠습니다.

 

여기서 중요한건 V(S)는 전압원이므로 상수. R, C도 상수

 

V는 시간에 따른 변수(커패시터 전압)이므로

 

이를 유념해 적분값을 계산해보겠습니다.

 

자연로그의 뺄셈은 나누기와 같다는 성질을 상기하여

 

정리해보죠

 

여기서 다시 시간에 대해 적분을 때립니다.

 

자연로그  ln을 지수함수 형태로 표현하면 ln이 사라진다는 것 쯤은 상식이니 패스하겠습니다.

 

이 수식을 V(t)에 대해 정리하면 이런 수식이 나옵니다.

 

LAST

 

 

알았습니다.

 

왜 그래프가 둥글게 나타나는지.

 

자 우리는 위 수식에서 생각해볼 수 있어요.

 

 시간이 0초일때는 수식이  

 

V(s) - V(-1) - V(s)

 

즉, 처음엔 커패시터에 충전된 전압밖에없다는걸...

 

그러다가. t가 RC를 곱한값과 같아지는 순간.

 

우리는 이 RC를 시정수라 표현하고

 

이값이 목표값을 0.632 만큼 도달하는데 걸리는 시간이라고 정의합니다.

 

이러한 수식을 찾았다면,

 

매틀랩이라는 훌륭한 도구를 활용하여 T값이 얼마인지 찾아낼 수 있습니다.

 

사람이 손으로 계산할 수 있찌만.

 

비효율적입니다.

 

 

 

이번포스팅은

 

겁나빡셌어요.

 

일단 저는 수학을 잘하지 못하기때문에

 

진짜 고생많이했습니다.

 

도움이 되었으면 좋겠습니다.

 

긴글 읽어주셔서 고맙습니다.

반응형
블로그 이미지

Lubly0104

전기설계 엔지니어가 알려주는 찐전기

,
반응형

중간고사 이후의 포스팅

 

그러니까. 횟수로치면 지지난번 포스팅 이후

 

약간의 공학 수학 관련 수식이 들어가서 헷갈리거나 어려우실 수 있으실테죠.

 

아무래도 전기라는 학문이 자연현상을 활용하여

 

경제적인 효과를 누리고자 하는 학문이다보니

 

약간의 수식들이 사용되는 경우가 많습니다.

 

저는 사실 수학을 잘하진 않아서 수학을 폭넓게 이해하고 있진 않습니다만,

 

 

대학을 나온 분이라면 대부분 배우는 기초지식(공학수학 정도)

 

까지는 공부를 해두시는 편이 좋겠습니다.

 

만약 나는 대학을 안나왔으면 어떻게 해야하나?

 

그런 분들은

 

전기라는 포괄적인 개념을 이해하면 됩니다.

 

제가 포스팅에 대해서 수식에 대해 최소한으로 다루는 이유가 있습니다.

 

실무에서 엔지니어로 뛰는 경우

 

실질적인 수식은 컴퓨터가 알아서 다해줍니다.

 

나는 전체적인 개요를 바탕으로 소프트웨어를 적절하게 구사하면 되고,

 

스스로 욕심이 있어서 더 깊게 알고싶다 하시면 공부하시면 됩니다.

 

쉽게말해 수식적인 이해도 중요하지만

 

보다 중요한건 전기라는 자연현상이 어떻게 생겨먹었는지

 

그전 체적인 모습을 기억하는게 더중요하단 겁니다.

내몸의 세포가 어떻게 이루어져있는지

 

DNA구조(수식에 대한 이해)까지는 알지못하지만

 

사람은 사람을 서로 알아볼 때 아주 세세한 DNA따위 몰라도.

 

서로를 이해하는데 전혀 문제가 없습니다.

 

심지어 남녀관계 처럼 복잡한 여러 호르몬의 상호작용이 존재하는 고도의 사고 및 심리현상에도

 

우리는 그 원인을 분석하지 않습니다. 있는 그대로를 받아들일 뿐이죠.

 

우리는 아무것도 모르지만 fall in love 하죠.

 

비유가 적절한진 모르겠으나.

 

전기도 그렇습니다.

 

실무를 뛰기 위해서 그정도만 알면됩니다.

 

내가 연구개발하는 사람이 아니라면요.

 

서두가 길었습니다.

 

오늘은 무전원 RL 회로를 알아보겠습니다.


우선, 무전원 RL 회로는 이렇게 생겼습니다.

 

 

무전원 RL회로 역시도.

 

이자체의 회로로는 의미가 없습니다.

 

전위가 없으니 말이죠.

 

하지만 어떠한 이유에서건

 

전기가 흐르다가 어떤 연유에서건 갑자기 끊어진 직후의

 

상황을 생각해보자는 겁니다.

 

원래는 RL회로는 이렇게 생겼을 겁니다.

 

 

G5가 원래는 전위를 형성하여

 

R을 거치고 L에 전류를 통해주는 상황에서

 

G5가 끊어졌을때의 상황을 공부하는 것은(무전원 RL 회로를 배우는 목적).

 

앞으로 수많은 전기제품에서 이러한 현상이 응용되어 활용될 예정이며,

 

실제로 이러한 원리가 활용되는 제품을 접했을 때

 

우리는 이러한 현상을 수식으로 배움으로써

 

보다 깊은 지식을 흡수할 수 있습니다.

 

원래 전공서적들을 보면 냅다 수식부터 해석합니다.

 

아니요. 저는 그렇게 안하겠습니다.

 

여러분들이 전공서적을 보고도 제 글을 읽고 있는건 여러가지 이유가 있겠으나

 

그중 하나가, 책이 잘 이해가지가 않아서

 

공부차원에서 읽는 것일테니...

 

무전원 RL회로란건

 

우리가 지금까지 배웠던 V = I * R로 해석될 수 있습니다.

 

아니요.

 

정확히 말하면 V = I * Z로 해석될 수 있습니다.

 

R과 Z가 무슨차이냐고요??

 

R은 저항(OHM)

 

Z는 저항, 인덕턴스, 커패시턴스(OHM, HENRY, FARAD)

 

V = I * R 의 상황이라면

 

전원이 인가된 회로에서 갑자기 전압원을 뺏을때 상황이 그닥 의미가 없어요,

 

단순하게 생각해보세요.

 

G5 전압원이 전기를 주다가 갑자기 뺏습니다.

 

G5가 사라집니다.

 

잠시라도 R에 흐르는 전류가 있나요?

 

V = I * R 옴의 법칙에 의하면

 

V가 사라지면 I = 0입니다.

 

근데 저항 R이 아니라 여기에다가

 

임피던스 성분중 하나인 L과 C 좀 다르다는 겁니다.

 

V = I * R이 아니라

 

V= I * Z를 적용해야 하거든요.

 

우리가 기존에 배웠던 공식

 

V = L * dI / dt

 

Q = C * V

 

라는 특수한 성질 때문에

 

전압원을 끊어도 미세한 전류가 남아있는 시간이 아주 잠시동안 있다는 거에요.

 

그래서 우리는 무전원 RL 회로 무전원 RC 회로를 배우는 겁니다.

 

그 미세한 전류가 아주잠시 남아있는 시간동안

 

쌓여있는 에너지를 활용하여

 

수많은 반도체 및 로봇을 개발하였거든요.

 

V = L * di / dt

 

라는 공식에서 알 수 있듯이

 

시간의 따른 전류 변화는 1차 함수 그래프로 나타낼 수 없습니다.

 

저항은 그게 가능했지만요.

 

Q = C * V도 마찬가지에요

 

Q를 시간에 대해 미분하면 전류가 나옵니다 (Q = I * t)

 

그러면 위 수식을 시간에 대하여 양변을 미분하면

 

I = C * dV / dt

 

커패시터 역시도 시간과 전류의 그래프가 1차 함수 그래프로 나타낼 수 없습니다.

 

저항은 그게 가능했지만요!

 

여튼 이러한 성질때문에

 

전압을 끊어도 아주 잠깐 동안은 RL 회로 및 RC 회로에는 전류가 남아있을 수 있습니다.

 

우리는 무전원 RL 및 무전원 RC 회로에서

 

전원을 갑자기 끊었을때

 

전류가 어떠한 형태로 떨어지는지가 궁금해서

 

미분방정식을 풀이하는거라 보시면됩니다.

 


 

수식정리를 지난 강의에서는 했는데

 

포스팅을 시작한 본질이 좀 흐려지는거 같아서

 

이번에는 무전원 RL회로에 대한

 

수식정리를 하지 않았습니다.

 

사실 포스팅을 진행하며 여러분들이 어떤 부분들이 궁금할지를 끊임없이 고민하고 올리는데

 

피드백이 없어서

 

수식에 대한 이해가 고픈건지

 

개략적인 이해가 고픈건지 잘모르겠습니다 ㅎ.

 

수식정리 부분에 대한 이해가 어려우신 분들은

 

피드백 주시면

 

향후 포스팅에서 수식관련된 부분도 함께 다뤄보도록 하겠습니다.

 

고맙습니다.

 

반응형
블로그 이미지

Lubly0104

전기설계 엔지니어가 알려주는 찐전기

,
반응형

우리는 지금까지,

 

모든 전기회로에서 흔히보이는 보이지 않는 아주 기초적인 부품

 

저항, 커패시터, 인덕터 (수동소자)와

 

연산증폭기 (능동소자)

 

에 대해서 공부했었습니다.

 

 

지금부터는,

 

배웠던 기초들이 서로 결합될 때

 

어떻게 응용할 수 있고,

 

실무에 어떻게 적용되는지 알아볼 시간입니다.

 

사실 우리가 사용하는 휴대폰 및 컴퓨터에는

 

 

모두 인덕터, 커패시터, 저항등이 존재합니다.

 

수많은 인덕터, 커패시터, 저항등이 적절하게 배열되어

 

비로소 반도체가 될 수 있고, 이것을 잘 응용하면

 

비로소 컴퓨터와 휴대폰이 될 수 있는 것이죠.

 

 

대체 어떻게 저항 커패시터 인덕터를 조합하여 휴대폰을 만들 수 있었는지

 

어떻게 이것이 훗날 컴퓨터가 될 수 있었는지 궁금하지 않으세요?

 

물론, 이 몇개의 포스팅으로 반도체의 원리, 컴퓨터의 원리를 밝힐 순 없으며,

 

저 또한 모든 회로의 동작을 100% 이해하고 있지는 않습니다,

 

 

다만,

 

우리는 이번챕터를 공부하게 됨으로써 어떤식으로 부품(R, L, C)을 조합해야 내가

 

원하는 방향대로 전기를 통제할 수 있는지 배울 수 있을 겁니다.

 

학생 여러분이라면 여러분이 현재 배우는 이지식이 훗날

 

관련 분야에 취업하여 실무에 투입 되었을때 큰 도움이 될 것이라 확신합니다.

 

 


우리가 오늘 본격적으로 배워 볼 것은 전원이 없는 RC 회로입니다.

 

 

다만 여기에 약간의 상황을 가정한뒤 설명을 진행할 예정입니다.

 

커패시터는 C4는 전기를 저장할 수 있다 하였습니다.

 

우리는 이 소자에 초기에 에너지가 저장되어 있다고 가정하고

 

회로를 해석해 볼 겁니다.

 

"그렇담 이런 무전원 RC 회로가 과연 언제쓰일까?"

 

궁금증이 생길 수 있겠죠?

 

무전원 RC 회로는 사실 어떠한 목적을 가지고 만들었다기 보다는

 

직류 전원이 갑자기 끊어질때 발생하는데요.

 

예를 들어 이런겁니다.

 

 

그림을 보면,

 

G4는 자연스레 R4에 전기를 공급하며 열을 발생하며 에너지를 소비하고 있고,

 

G4는 자연스레 C5에 전기를 보냄으로써 에너지를 충전하고 있습니다.

(위 회로가 이해가 안가시는 분은 지난 포스팅을 참고해주세요)

 

여기서 전압원인 G4 가 어떤 이유에서건 끊어진겁니다.

 

그러면 이런 그림이 나올겁니다.

 

초기에 전기를 공급했던 전압원이 존재했기에

 

위 커패시터는 양단에 전압이 형성될 수 있습니다.

 

전압원이 없고 모두 수동소자인데 전압이 있다니 이상하죠?

 

비정상적인 상태는

 

정상적인 상태로 돌아가려는게 자연의 이치입니다.

 

때문에 C4에 존재하는 전압도 언젠가 소멸할 것이라는 자연스런 생각이 듭니다.

 

헌데 어떻게 소멸될까요?

 

지난 포스팅에서.

 

좀 오래되긴 했네요.

 

저항은 전기의 흐름을 막는 거라고 설명드린 적 있었죠.

 

엄밀히 말하면 전자가 이동할때 양성자와 부딪혀 에너지를 잃게 되는데.

 

그때 에너지 손실량이 열로써 나타나게 됩니다.

 

여러분이 집에서 쓰는 전기난로 자동차에 있는 엉따.

 

모두 같은원리에요.

 

다시 본론으로 돌아와서.

 

 

우리는 위 그림을 보면서 아래와 같이 사고 실험을 해볼 수 있을겁니다.

 

사고 실험

1. 전원이 차단된 직후 C4에 초기 전압이 존재할 것이다.

 

2. 하지만 C4 전압은 곧 소멸될 것이다.

 

3. R3 저항이 로써 모두 에너지를 소모할 것이니까.

 

말로써는 그럭저럭 이해가 가는데 수학적으로도 그런지 한번 볼까요?

 

사고 실험 1번에 가정했던 C4 초기 전압을 V(0) 라고 가정해볼게요

 

키르히호프 법칙을 적용해보겠습니다.

 

폐루프를 회전하는 전류의 합은 항상 0이다.

 

때문에

 

아래 수식이 성립합니다

 

I(R) + I(C) = 0

 

여기서

 

I(R)은 V(0) / R 로 표현할 수 있고

 

I(C)는 Q=C*V 공식에서 양변을 시간으로 미분

 

I(C) = C* dV/dt 를 구한뒤

 

대입하면 됩니다.

 

정리하면,

 

v(0) / R3 + C * dV / dt = 0

 

인건데요.

 

여기서 의미하는 수식이 잘 이해가 되지 않으니

 

약간의 수학적인 테크닉을 통해서 수식이 의미하는 바를

 

알아챌 수 있게 끔 깔끔하게 만들어 볼게요.

 

위 수식은 잘 정리하면 아래와 같습니다.

 

dV / v(0) = -{1 / (R*C) * dt}

 

양변을 시간으로 적분해볼게요

 

ln(v) = -t / (R*C) + ln(A)

 

이걸 더 정리해보면

 

ln(v / A) = -t / (R*C) .... 수식 1

 

 

(이 수식이 이해가 가지 않는 분들은 공학수학을 배우셔야 하는데, 사실 시험볼

 

목적이 아니라면 모른다고 좌절하지 마시고 수식유도는 가볍게 읽고 넘어가시면 됩니다.)

 

여기서 수식1을 지수함수로 표현을 해볼게요

 

v(t) =  A*e^(-t / R*C)

 

근데 v(0) 즉 무전원 RC 회로에서 전원을 차단했을때 전압이 V(0) 이니까

 

A = V(0)

 

더 수식을 정리하면,

 

v(t) = V(0)*e^(t / R*C) ..... 결론

 

겁나 어렵고 이해도 안가고...

 

왜 이렇게 복잡하게 난리를 피웠냐구요?

 

우리는 수많은 수식 삽질끝에

 

비로소 위 수식을 시간과 전압 그래프로 나타낼 수 있는 수식을 얻었는데.

 

사실 사고 실험에서는

 

시간이 지나면 전압이 저항의 열로 소멸될 것이라는 추론만 가능했는데

 

수식으로 표현하니 어떻게 전압이 변화하는지 구체적으로

 

시간을 알 수 있게 되었습니다.

 

내가 궁금했던. 아니. 그러니까 여러분이 궁금하지 않아도 알아야 하는 이 장황한 수식은

 

바로 무전원 R, C 회로에서 어떻게 전압이 시간에 따라 변화하느냐를

 

나타내는 디테일한 지침인겁니다.

 

수학적으로요.

 

http://www.datasheet.hk/view_download.php?id=1794507&file=0398%5Cnfr21gd4701012l_4377544.pdf

 

위 그림은 여러분이 앞으로 전장 설계를 맡게 되었을때

 

소자의 특성을 그래프로 나타낸 기술적인 특성을 확인할 수 있도록 표현한 Datasheet 인데요.

 

RC 필터에서 나타나는 저 지수함수와 같이

 

대부분의 차단기 밑 RC 필터는

 

이렇게 지수함수 모양을 하고 있습니다.

 

실제로 엔지니어로 일하게 되면, 저렇게 디테일한 부분까지는 몰라도 되지만.

 

원리정도는 알고 있어야 엔지니어로써 역량이 더 성장할 수 있겟죠?

 

포스팅이 길었네요.

 

저는 이만 물러가고

 

다음 포스팅에 또다른 회로를 들고 나타나도록 하겠습니다.

반응형
블로그 이미지

Lubly0104

전기설계 엔지니어가 알려주는 찐전기

,